ZConfig Package Reference

Abstract

Release 1.0

Zope Corporation

October 3, 2003

Lafayette Technology Center

513 Prince Edward Street

Fredericksburg, VA 22401
http://www.zope.com/

This document describes the syntax and API used in configuration files for components of a Zope installation written
by Zope Corporation. This configuration mechanism is itself configured using a schema specification written in XML.

Contents

1

2

Introduction

Configuration Syntax

2.1 Extending the Configuration Schema
2.2 Textual SubstitutioninValues.

Writing Configuration Schema

3.1 SchemaElements.,
3.2 SchemaComponents.

Standard ZConfig Datatypes

ZConfig — Basic configuration support

51 BasicUsage

ZConfig.datatypes — Default data type registry

ZConfig.loader — Resource loading support

7.1 LoaderObjects.

ZConfig.cmdline — Command-line override support

ZConfig.substitution — String substitution

9.1 Examples. e

Schema Document Type Definition

10

11

.................... 13

13

14

.................... 15

15

16

.................... 17

17

1 Introduction

Zope uses a common syntax and API for configuration files designed for software components written by Zope Corpo-
ration. Third-party software which is also part of a Zope installation may use a different syntax, though any software

is welcome to use the syntax used by Zope Corporation. Any software written in Python is free to Zi€etifig

software to load such configuration files in order to ensure compatibility. This software is covered by the Zope Public

License, version 2.0.

TheZConfig package has been tested with Python 2.1 and 2.2. Python 2.0 is not sup@@tedig only relies
on the Python standard library.

Configurations which uséConfig are described usingchemaA schema is a specification for the allowed structure

and content of the configuratiorzConfig schema are written using a small XML-based language. The schema
language allows the schema author to specify the names of the keys allowed at the top level and within sections, to
define the types of sections which may be used (and where), the types of each values, whether a key or section must
be specified or is optional, default values for keys, and whether a value can be given only once or repeatedly.

2 Configuration Syntax

Like the ConfigParser format, this format supports key-value pairs arranged in sections. Unlike the
ConfigParser format, sections are typed and can be organized hierarchically. Additional files may be included

if needed. Schema components not specified in the application schema can be imported from the configuration file.
Though both formats are substantially line-oriented, this format is more flexible.

The intent of supporting nested section is to allow setting up the configurations for loosely-associated components in
a container. For example, each process running on a host might get its configuration section from that host’s section
of a shared configuration file.

The top level of a configuration file consists of a series of inclusions, key-value pairs, and sections.

Comments can be added on lines by themselves. A comment Haasthe first non-space character and extends to
the end of the line:

This is a comment

An inclusion is expressed like this:

%include defaults.conf

The resource to be included can be specified by a relative or absolute URL, resolved relative to the URL of the resource
the%include directive is located in.

A key-value pair is expressed like this:

key value

The key may include any non-white characters except for parentheses. The value contains all the characters between
the key and the end of the line, with surrounding whitespace removed.

Since comments must be on lines by themselves #heharacter can be part of a value:

2 2 Configuration Syntax

key value # still part of the value

Sections may be either empty or non-empty. An empty section may be used to provide an alias for another section.
A non-empty section starts with a header, contains configuration data on subsequent lines, and ends with a terminator.
The header for a non-empty section has this form (square brackets denote optional parts):

<section-type [name] >

section-type@andnameall have the same syntactic constraints as key names.
The terminator looks like this:

</ section-type

The configuration data in a non-empty section consists of a sequence of one or more key-value pairs and sections. For
example:

<my-section>
key-1 value-1
key-2 value-2

<another-section>
key-3 value-3
</another-section>
</my-section>

(The indentation is used here for clarity, but is not required for syntactic correctness.)
The header for empty sections is similar to that of non-empty sections, but there is no terminator:

<section-type [name] >

2.1 Extending the Configuration Schema

As we'll see in section 3, “Writing Configuration Schema,” what can be written in a configuration is controlled by
schemas which can be built frooomponentsThese components can also be used to extend the set of implementations
of objects the application can handle. What this means when writing a configuration is that third-party implementations
of application object types can be used wherever those application types are used in the configuration, if there’s a
ZConfig component available for that implementation.

The configuration file can use &import directive to load a named component:

%import Products.Ape

The text to the right of th€simport keyword must be the name of a Python package;A@enfig component
provided by that package will be loaded and incorporated into the schema being used to load the configuration file.
After the import, section types defined in the component may be used in the configuration.

More detail is needed for this to really make sense.

2.1 Extending the Configuration Schema 3

A schema may define section types which alpstract these cannot be used directly in a configuration, but multiple
concrete section types can be defined wiicplementhe abstract types. Wherever the application allows an abstract
type to be used, any concrete type which implements that abstract type can be used in an actual configuration.

The %import directive allows loading schema components which provide alternate concrete section types which
implement the abstract types defined by the application. This allows third-party implementations of abstract types to
be used in place of or in addition to implementations provided with the application.

Consider an example application application which supports logging in the same way Zope 2 does. There are some
parameters which configure the general behavior of the logging mechanism, and an arbitrary ndotpkeandlers

may be specified to control how the log messages are handled. Several log handlers are provided by the application.
Here is an example logging configuration:

<eventlog>
level verbose

<logfile>
path /var/log/myapp/events.log

</logfile>

</eventlog>

A third-party extension may provide a log handler to send high-priority alerts the system administrator’s text pager or
SMS-capable phone. All that's needed is to install the implementation so it can be imported by Python, and modify
the configuration:

%import my.pager.loghandler

<eventlog>
level verbose

<logfile>
path /var/log/myapp/events.log
</logfile>

<pager>
number 1-800-555-1234
message Something broke!
</pager>
</eventlog>

2.2 Textual Substitution in Values

ZConfig provides a limited way to re-use portions of a value using simple string substitution. To use this facility,
define named bits of replacement text using%aefine directive, and reference these texts from values.

The syntax foRodefine is:

%define name [value]

The value ohamemust be a sequence of letters, digits, and underscores, and may not start with a digit; the namespace
for these names is separate from the other namespaces us@®witfig , and is case-insensitive.\alueis omitted,

it will be the empty string. If given, there must be whitespace betwesneandvalue valuewill not include any
whitespace on either side, just like values from key-value pairs.

4 2 Configuration Syntax

Names must be defined before they are used, and may not be re-defined. All resources being parsed as part of a
configuration share a single namespace for defined names. This means that resources which may be included more
than once should not define any names.

References to defined names from configuration values use the syntax described fwitiig.substitution
module. Configuration values which include$ as part of the actual value will need to us$ to get a single$’ in
the result.

The values of defined names are processed in the same way as configuration values, and may contain references to
named definitions.

For example, the value fdwey will evaluate tovalue :

%define name value
key $name

3 Writing Configuration Schema

ZConfig schema are written as XML documents.

Data types are searched in a special namespace defined by the data type registry. The default registry has slightly
magical semantics: If the value can be matched to a standard data type when interprdiadiagey, the standard

data type will be used. If that fails, the value must beéoted-name containing at least one dot, and a conversion
function will be sought using theearch() method of the data type registry used to load the schema.

3.1 Schema Elements

For each element, the content model is shown, followed by a description of how the element is used, and then a list of
the available attributes. For each attribute, the type of the value is given as either the nafi@oofig datatype or
an XML attribute value type. Familiarity with XML's Document Type Definition language is helpful.

The following elements are used to describe a schema:

<schema >
description?, metadefault?, example?, import*, (sectiontype |
abstracttype)*, (section | key | multisection | multikey)*

</ schema>
Document element for ZConfig schema.

extends (space-separated-url-references
A list of URLs of base schemas from which this section type will inherit key, section, and section type
declarations. If omitted, this schema is defined using only the keys, sections, and section types contained
within theschema element.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this section. If the valwoises-namethat
begins with a period, the value pfefix will be pre-pended, if set. If any base schemas are listed in the
extends attribute, the default value for this attribute comes from the base schemas. If the base schemas
all use the samdatatype , then that data type will be the default value for the extending schema. If
there are no base schemas, the default valoeliswhich means that th2Config section object will be
used unconverted. If the base schemas have diffelaatype definitions, you must explicitly define
thedatatype inthe extending schema.

handler (basic-key)

keytype (basic-keyor dotted-namé
The data type converter which will be applied to keys found in this section. This can be used to constrain
key values in different ways; two data types which may be especially useful adetitdier andipaddr-
or-hostnametypes. If the value is aotted-namethat begins with a period, the value pffefix will
be pre-pended, if set. If any base schemas are listed iextemds attribute, the default value for this
attribute comes from the base schemas. If the base schemas all use thegampe , then that key type
will be the default value for the extending schema. If there are no base schemas, the defaultbadice is
key. If the base schemas have differ&aytype definitions, you must explicitly define theeytype in
the extending schema.

prefix (dotted-name
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts with thechema element if it hasn’t been overridden by an inner element with a
prefix attribute.

<description >
PCDATA

</ description >
Descriptive text explaining the purpose the container ofdscription element. Most other elements can
contain adescription element as their first child.

format (NMTOKEN)
Optional attribute that can be added to indicate what conventions are used to mark up the contained text.
This is intended to serve as a hint for documentation extraction tools. Suggested values are:
Value | Content Format
plain text/plain; blank lines separate paragraphs
rest reStructuredText
stx Classic Structured Text

<example >
PCDATA
</ example >
An example value. This serves only as documentation.

<metadefault >
PCDATA

</ metadefault >
A description of the default value, for human readers. This may include information about how a computed
value is determined when the schema does not specify a default value.

<abstracttype >
description?
</ abstracttype = >
Define an abstract section type.

name (basic-key)
The name of the abstract section type; required.

<sectiontype >

description?, (section | key | multisection | multikey)*
</ sectiontype >

Define a concrete section type.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this section. If the valuéaged-name
that begins with a period, the valuemfefix will be pre-pended, if set.

extends (basic-key)
The name of a concrete section type from which this section type acquires all key and section declara-
tions. This type doesot automatically implement any abstract section type implemented by the named

6 3 Writing Configuration Schema

section type. If omitted, this section is defined with only the keys and sections contained within the
sectiontype element.

implements (basic-key)
The name of an abstract section type which this concrete section type implements. If omitted, this section
type does not implement any abstract type, and can only be used if it is specified directly in a schema or
other section type.

keytype (basic-key)
The data type converter which will be applied to keys found in this section. This can be used to constrain
key values in different ways; two data types which may be especially useful adetitdier andipaddr-
or-hostnametypes. If the value is dotted-namethat begins with a period, the valuefefix ~ will be
pre-pended, if set. The default valuebasic-key.

name (basic-key)
The name of the section type; required.

prefix (dotted-nameg
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts in theectiontype element. If omitted, the prefix specified by a containing
context is used if specified.

<import >
EMPTY
</ import >
Import a schema component. Exactly one of the attribpéekage andsrc must be specified.

file (file name without directory information)
Name of the component file within a package; if not specifiegmnponent.xml’ is used. This may only be
given whenpackage is used. (Thecomponent.xm!’ file is always used when importing vigimport
from a configuration file.)

package (dotted-nameé
Python-package style name that identifies a directory founslyerpath containing a schema compo-
nent in a file namedcomponent.xml’ (unless the file name is overridden usifig). Dots in the value
are converted to directory separators.

src (url-reference)
URL to a separate schema which can provide useful types. The referenced resource must contain a schema,
not a schema component. Section types defined or imported by the referenced schema are added to the
schema containing thenport ; top-level keys and sections are ignored.

<key >
description?, example?, metadefault?

<l key >
A key element is used to describe a key-value pair which may occur at most once in the section type or top-level
schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this key should be the value ofSettionValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the key hame to underscores.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this key. If the valuedstad-namethat
begins with a period, the value pfefix will be pre-pended, if set.

default (string)
If the key-value pair is optional and this attribute is specified, the value of this attribute will be converted
using the appropriate data type converter and returned to the application as the configured value. This
attribute may not be specified if tmequired attribute isyes .

handler (basic-key)

3.1 Schema Elements 7

name (basic-key)
The name of the key, as it must be given in a configuration instancg,.oif the value is *’, any name
not already specified as a key may be used, and the configuration value for the key will be a dictionary
mapping from the key name to the value. In this caseathébute attribute must be specified, and
the data type for the key will be applied to each key which is found.

required (yes|no)
Specifies whether the configuration instance is required to provide the key. If the valas jshe
default attribute may not be specified and an error will be reported if the configuration instance does
not specify a value for the key. If the valuens (the default) and the configuration instance does not
specify a value, the value reported to the application will be that specified lyefla@lt attribute, if
given, orNone.

<multikey >

description?, example?, metadefault?, default*

</ multikey >

A multikey elementis used to describe a key-value pair which may occur any number of times in the section
type or top-level schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this key should be the value ofSettionValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the key name to underscores.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this key. If the valuedstad-namethat
begins with a period, the value pfefix will be pre-pended, if set.

handler (basic-key)

name (basic-key)
The name of the key, as it must be given in a configuration instance,.dif the value is *+', any name
not already specified as a key may be used, and the configuration value for the key will be a dictionary
mapping from the key name to the value. In this caseatirébute attribute must be specified, and
the data type for the key will be applied to each key which is found.

required (yes|no)
Specifies whether the configuration instance is required to provide the key. If the vajfes jisno
default elements may be specified and an error will be reported if the configuration instance does
not specify at least one value for the key. If the valuads(the default) and the configuration instance
does not specify a value, the value reported to the application will be a list containing one element for
eachdefault element specified as a child of thaultikey . Each value will be individually converted
according to thelatatype attribute.

<section >

description?

</ section >

A section elementis used to describe a section which may occur at most once in the section type or top-level
schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this section should be the value ect@nValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the section name to underscores,
in which case th@ame attribute may not b& or +.

handler (basic-key)

name (basic-key)
The name of the section, as it must be given in a configuration instance,+. If the value is*, any
name not already specified as a key may be used. If the vatueris, theattribute attribute must be

3 Writing Configuration Schema

specified. If the value is, any name is allowed, or the name may be omitted. If the valsreasy name
is allowed, but some name must be provided.

required (yes|no)
Specifies whether the configuration instance is required to provide the section. If the wadse & error
will be reported if the configuration instance does not include the section. If the vatoe(tbe default)
and the configuration instance does not include the section, the value reported to the application will be
None.

type (basic-key)
The section type which matching sections must implement. If the value names an abstract section type,
matching sections in the configuration file must be of a type which specifies that it implements the named
abstract type. If the name identifies a concrete type, the section type must match exactly.

<multisection >
description?

</ multisection >
A multisection element is used to describe a section which may occur any number of times in the section
type or top-level schema in which it is listed.

attribute (identifier)
The name of the Python attribute which matching sections should be the value &emianValue
instance. This is required and must be unique within the immediate contents of a section type or schema.
TheSectionValue instance will contain a list of matching sections.

handler (basic-key)

name (basic-key)
For amultisection , any name not already specified as a key may be used. If the vatueris.,
the attribute attribute must be specified. If the valuerisany name is allowed, or the name may be
omitted. If the value i+, any name is allowed, but some name must be provided. No other value for the
name attribute is allowed for anultisection

required (yes|no)
Specifies whether the configuration instance is required to provide at least one matching section. If the
value isyes, an error will be reported if the configuration instance does not include the section. If the
value isno (the default) and the configuration instance does not include the section, the value reported to
the application will beNone.

type (basic-key)
The section type which matching sections must implement. If the value names an abstract section type,
matching sections in the configuration file must be of types which specify that they implement the named
abstract type. If the name identifies a concrete type, the section type must match exactly.

3.2 Schema Components

XXX need more explanation

ZConfig supports schema components that can be provided by disparate components, and allows them to be knit
together into concrete schema for applications. Components cannot add additional keys or sections in the application
schema.

A schemacomponents allowed to define new abstract and section types. Components are identified using a dotted-
name, similar to a Python module name. For example, one component raaglhstorage

Schema components are stored alongside application code since they directly reference datatype code. Schema com-
ponents are provided by Python packages. The component definition is normally stored in thuenfdkenent.xml’;

an alternate filename may be specified usinditbe attribute of thémport element. Components imported using

the %import keyword from a configuration file must be namedrhponent.xml’. The component defines the types
provided by that component; it must have@mponent element as the document element.

3.2 Schema Components 9

The following element is used as the document element for schema components. Note that schema components do not
allow keys and sections to be added to the top-level of a schema; they serve only to provide type definitions.

<component >

description?, (abstracttype | sectiontype)*
</ component >

The top-level element for schema components.

prefix (dotted-name
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts within theomponent element if it hasn’t been overridden by an inner element
with aprefix attribute.

4 Standard ZConfig Datatypes

There are a number of data types which can be identified usindatadéype attribute onkey , sectiontype
andschema elements. Applications may extend the set of datatypes by callingtfister() method of the data
type registry being used or by using Python dotted-names to refer to conversion routines defined in code.

The following data types are provided by the default type registry.

basic-key
The default data type for a key in a ZConfig configuration file. The result of conversion is always lower-case,
and matches the regular expressijanz][-. _a-z0-9]* .

boolean

Convert a human-friendly string to a boolean value. The najegeson, andtrue convert toTrue , while no,
off ,andfalse converttoFalse . Comparisons are case-insensitive. All other input strings are disallowed.

byte-size
A specification of a size, with byte multiplier suffixes (for exampl28MB). Suffixes are case insensitive and
may be KB, ‘ MB, or ‘GB

existing-dirpath
Validates that the directory portion of a pathname exists. For example, if the value provided/lis!”, ‘ /foo’
must be an existing directory. No conversion is performed.

existing-directory
Validates that a directory by the given name exists on the local filesystem. No conversion is performed.

existing-file
Validates that a file by the given name exists. No conversion is performed.

existing-path
Validates that a path (file, directory, or symlink) by the given name exists on the local filesystem. No conversion
is performed.

float
A Python float.Inf , -Inf |, andNaNare not allowed.

identifier
Any valid Python identifier.
inet-address

An Internet address expressed ghastname port) pair. If only the port is specified, an empty string will be
returned fothostnamelf the port is omittedNone will be returned forport.

10 4 Standard ZConfig Datatypes

integer
Convert a value to an integer. This will be a Python if the value is in the range allowed fiyt , otherwise
a Pythorlong is returned.

ipaddr-or-hostname
Validates a valid IP address or hostname. If the first character is a digit, the value is assumed to be an IP address.
If the first character is not a digit, the value is assumed to be a hostname. Hostnames are converted to lower
case.

locale
Any valid locale specifier accepted by the availdblgale.setlocale() function. Be aware that only the
'C’ locale is supported on some platforms.

null
No conversion is performed; the value passed in is the value returned. This is the default data type for section
values.

port-number
Returns a valid port number as an integer. Validity does not imply that any particular use may be made of the
port, however. For example, port number lower than 1024 generally cannot be bound by non-root users.

socket-address
An address for a socket. The converted value is an object providing two attribfatesly — specifies the
address familyAF_INET or AF_UNIX), with None instead ofAF_UNIX on platforms that don’t support it.
Theaddress attribute will be the address that should be passed to the sobked§ method. If the family
is AF_UNIX, the specific address will be a pathname; if the familAKS_INET , the second part will be the
result of theinet-addressconversion.

string
Returns the input value as a string. If the source is a Unicode string, this implies that it will be checked to be
simple 7-bitascii. This is the default data type for key values in configuration files.

time-interval
A specification of a time interval, with multiplier suffixes (for examgl&h). Suffixes are case insensitive and
may be 5§’ (seconds), i (minutes), h’ (hours), or d’ (days).

5 ZConfig — Basic configuration support

The mainZConfig package exports these convenience functions:

loadConfig (schema, un[I, overrides])
Load and return a configuration from a URL or pathname giverutby url may be a URL, absolute path-
name, or relative pathname. Fragment identifiers are not suppstkdmais a reference to a schema loaded

by loadSchema() or loadSchemaFile() . The return value is a tuple containing the configuration ob-
ject and a composite handler that, when called with a name-to-handler mapping, calls all the handlers for the
configuration.

The optionabverridesargument represents information derived from command-line arguments. If given, it must
be either a sequence of value specifierdyane. A value specifieis a string of the fornoptionpath-value The
optionpathspecifies the “full path” to the configuration setting: it can contain a sequence of names, separated
by ‘/* characters. Each name before the last names a section from the configuration file, and the last name
corresponds to a key within the section identified by the leading section nanoggiolipathcontains only one

name, it identifies a key in the top-level schemalueis a string that will be treated just like a value in the
configuration file.

11

loadConfigFile ('schema, fiIE, urI[, overrides]])
Load and return a configuration from an opened file objecturlfis omitted, one will be computed based
on thename attribute offile, if it exists. If no URL can be determined, &binclude statements in the
configuration must use absolute URLschemais a reference to a schema loadedlbgdSchema() or
loadSchemakFile() . The return value is a tuple containing the configuration object and a composite handler
that, when called with a name-to-handler mapping, calls all the handlers for the configuratioaveFhdes
argument is the same as for tleadConfig() function.

loadSchema (url)
Load a schema definition from the URIrl. url may be a URL, absolute pathname, or relative pathname.
Fragment identifiers are not supported. The resulting schema object can be palesstCtinfig() or
loadConfigFile() . The schema object may be used as many times as needed.

loadSchemaFile (file[, url])
Load a schema definition from the open file objtiet If url is given and nolNone, it should be the URL of
resource represented file. If url is omitted orNone, a URL may be computed from theame attribute of
file, if present. The resulting schema object can be pasdedd@onfig() or loadConfigFile() . The
schema object may be used as many times as needed.

The following exceptions are defined by this package:

exceptionConfigurationError
Base class for exceptions specific to #@onfig package. All instances providenaessage attribute that
describes the specific error.

exceptionConfigurationSyntaxError
Exception raised when a configuration source does not conform to the allowed syntax. In addition to the
message attribute, exceptions of this type offer thel andlineno attributes, which provide the URL
and line number at which the error was detected.

exceptionConfigurationTypeError

exceptionConfigurationMissingSectionError
Raised when a requested named section is not available.

exceptionConfigurationConflictingSectionError
Raised when a request for a section cannot be fulfilled without ambiguity.

exceptionDataConversionError
Raised when a data type conversion fails witalueError . This exception is a subclass of both
ConfigurationError andValueError . Thestr() of the exception provides the explanation from
the originalValueError , and the line number and URL of the value which provoked the error. The following
additional attributes are provided:

Attribute Value

colno column number at which the value startsNwone
exception the originalValueError instance

lineno line number on which the value starts

message str() returned by the originaValueError

value original value passed to the conversion function
url URL of the resource providing the value text

exceptionSchemagrror
Raised when a schema contains an error. This exception type provides the attibuti#seno , andcolno
which provide the source URL, the line number, and the column number at which the error was detected. These
attributes may b&lone in some cases.

exceptionSubstitutionReplacementError
Raised when the source text contains references to names which are not defimggping The attributes
source andname provide the complete source text and the name (converted to lower case) for which no

12 5 ZConfig — Basic configuration support

replacement is defined.

exceptionSubstitutionSyntaxError
Raised when the source text contains syntactical errors.

5.1 Basic Usage

The simplest use afConfig is to load a configuration based on a schema stored in a file. This example loads a
configuration file specified on the command line using a schema in the same directory as the script:

import os
import sys
import ZConfig

try:
myfile = _ file_

except NamekError:
really should follow symlinks here:
myfile = sys.argv[0]

mydir = os.path.dirname(os.path.abspath(myfile))

schema = ZConf